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About the Polymer Free Volume Theory 
V. S. NECHITAILO 
All-Union Research Institute for Medical Polymers Moscow, 11 7246 Nauchny proezd 10, USSR 

The fluctuation-dissipation theory of free volume in condensed media is discussed. The free volume 
concept developed is applicable in the theory of viscoelastic properties and thermal expansion of 
polymers. 

KEY WORDS Free volume, polymers, theory. 

THEORETICAL DISCUSSION 

The free volume concept in condensed media proves to be very useful and applicable 
for a theoretical description of many processes occurring in liquids and polymers. 
It serves as a basis for developing the theories of polymer low molecular weight 
compound diffusion, of polymer thermal conductivity, solubility, and so forth (see 
Reference 1 and references to it). In particular, the thermal expansion coefficient 
for liquids and polymers is mostly due to a higher free volume.2 

The free volume concept finds the widest use in the polymer viscoelastic property 
theory developed by Williams, Landell and Ferri (WLF)* on the basis of the Doo- 
little empirical equation: involving the viscosity r( and the specific free volume f 
through the ratio: 

where a and b are constants, 

v - v ,  3 f=-- - 
V V’ 

V ,  V,, Vf are the real, occupied, and free volumes of a medium at temperature T. 
According to this theory, changes in the viscosity and relaxation time of structural 
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172 V. S. NECHITAILO 

units of the medium T at the temperature range of from T, to T may be described 
by using the reduction coefficient in agreement with the WLF equation:2 

where T, is the structural glass-transition temperature dilatometrically determined 
and C1 and C2 are the “universal” constants: 

f ( T  1 = 17.4, C2 = = 51.6 
b c, = 

293 f(T,) 4 (4) 

and d, is the temperature coefficient of free volume changes: 

Proceeding from the “universal” C,  and C2 constant values found and assuming 
that b = I (in accordance with the results by Doolittte) Williams, Landell and 
Ferri obtain 

f(T,)  = 0.025 and d, = 4.8.10-4 grad-’. (6) 

While deriving equation (3), it is assumed that the free volume depends linearly 
on T (see ( 5 ) ) ,  though the d e p e n d e n ~ e ~ . ~  

f ( T )  - T3” (7) 

is observed experimentally. It should be noted that multiple attempts to substantiate 
the dependence (7) (see, e.g., reference 5) theoretically have failed. 

An indefinite value of the T, temperature is used, whose value depends on various 
factors (a cooling rate, the presence of residual monomer and moisture), so it is 
concluded that the fraction of the free volume at the glass-transition temperature 
f(T,) = const. (see (6)) is not correct for all polymers. Moreover, as is noted in 
reference 1, f(T,)  depends on the flexibility of the polymer chain, the pattern of 
molecular packing, and the method for assessing the occupied volume, as the 
fraction of the free volume is determined by the equation (2). 

The latter fact itself contains some known uncertainty of the physical meaning 
of free volume and so the values of f(T,) calculated by various methods in ac- 
cordance with various free volume t h e ~ r i e s ~ ~ ~ , ~ . ~  are inconsistent. Thus, the fraction 
of free volume f(T,) is 0.025 (see (6)), if calculated using the WLF equation (3), 
whereas it is 0.1-0.15, if calculated using the data on compressibility or using the 
assumption of volume additivity for various atomic groups.’ 

All of this suggests that the polymer free volume theory is far from complete 
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POLYMER FREE VOLUME THEORY 1 73 

and requires new concepts to be developed and new parameters of respective states 
to be obtained for adequate description of viscoelastic properties and many proc- 
esses (see above) in liquids and polymers. 

Let us consider the following model of a condensed medium. Let it consist of 
structural elements having mass m and let the element be disturbed from equilib- 
rium for the x,-value at initial time t = 0. Then at t > 0, it restores the equilibrium 
according to the following equation: 

f + 2 8 1  + w;x = 0, (8) 

where 8 = zlm, w‘, = Kim, and K and z are the coefficients of elasticity and friction, 
respectively. In the case where 6 < wo(z < fi), the element makes damped 
vibrations with its inherent fall time ‘ T ~  = 1/6, and the less they are, the higher the 
z friction coefficients. With 6 = So = wo, the motion of the element becomes 
aperiodic (nonoscillatory) with the minimal relaxation time 

at the friction coefficient zo = dKm.7 With 6 > wo(z > zo), the motion of the 
element (relaxant) occurs with two relaxation times: “short,” 

and “long,” T ,  which has the physical meaning 

wo/6 
1 - dl - w@2 

7 = ‘To > ‘To. 

For polymers, at 6 >> w,(z >> zo) it is easy to obtain, from (lo), 

from which, taking into account (1) at a = q0/2, b = 1,  we finally obtain 

T = ‘ T ~  exp(l1’. 

Let the structural element in the medium with z >> to (relaxant) be affected by 
the periodic force with amplitude fo, frequency w << wo and hw << KBT, and h 

?The value shows that the medium viscosity qo = - lo-‘ (p/s.cm) corresponds to the friction 
coefficient z,,, whereas q 3 (g/s.cm), for most liquids. 
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V .  S. NECHITAILO 174 

and KB are the Planck and Boltzmann constants, respectively. The energy dissipated 
by the relaxant for the period is 

IT 2WT 
Q = -  f& 2K 1 + W ~ T ~  

From (13) it can easily be seen that the maximum consumed energy occurs at 

and makes up 

the absorption band Q/Q, ( lgw)  being symmetrical with its width at the semiheight 

With the analysis of the values obtained for the relaxant, a structural element 
in question indicates that the following situation which is important for it occurs, 
namely: changes in the medium temperature lead to those in the relaxation of the 
element by (14) (due to modification of the coefficient z ( T ) ) ,  only a shift of the 
maximum absorption band being seen on the axis fgw  in accordance with (14), but 
the intensity of the absorption band and its width do not depend on T (see (15) 
and (16)). Thus, the relaxant absorption of energy does not depend on the viscosity 
of a medium and its temperature and is determined by the elasticity coefficient 
alone. 

Now let us consider fluctuations of a one-dimensional relaxant. According to 
the fluctuation-dissipation theorem,8 involving the fluctuation of physical quantities 
and the dissipative properties of the system externally affected, we shall find the 
mean-square value of the fluctuation deviation of the relaxant from the equilibrium 

where the imaginary fraction of the total susceptibility of the relaxant is 

Substituting (18) into (17), we get 
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POLYMER FREE VOLUME THEORY 175 

It is evident that the mean-square value of the fluctuation deviation of the relaxant 
does not depend on the viscosity of a medium and is determined by the thermal 
energy K,T and the elasticity coefficient K .  

The probability distribution for various fluctuation x-values is determined by8 

a distribution of this kind is called a Gaussian distribution. 
In the case of a three-dimensional relaxant (which is a structural element of a 

medium), the mean square values of fluctuation deviations y2 and i2 are found in 
the same manner as in (19), in general, by different values of the elasticity coefficient 
( K x ,  K,, K z ) .  The distribution of probabilities w ( x ,  y ,  z)dxdydz for the three 
statistically independent values X ,  Y and 2 is the product of three independent 
Gaussian distributions for the X ,  Y and 2 values: 

Based on the found mean-square values of fluctuation deviations X 2 ,  Y 2  and 
Z 2 ,  the mean-square value of the fluctuation volume of a relaxant can be deter- 
mined: 

where the average elasticity coefficient is K,,, = S K ;  K,*K,. The probability dis- 
tribution is determined for various values of fluctuation volume (21). 

Thus, the free volume we have found in a polymer 

where N is the number of relaxants, is virtually a fluctuation volume and is deter- 
mined by the thermal energy and elasticity coefficient for a structural medium 
element, rather than the real-occupied volume difference, as previously supposed 
(see (2)). So, to find the free volume within the scope of the theory developed by 
us, there is no need to know the well indefinite volume. 

As seen from (22) and (23), the free volume depends on the temperature 

Vf - T3I2 (24) 

in full accord with the experimental  result^,^.^ which is the important reason for 
the developed concepts of polymers. 

Let us use the developed free volume concept in the theory of polymer viscoelastic 
properties. Taking into account the assumption given in reference 9, that the 
structural element can migrate when the proportion of the locally relative free 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
1
0
 
1
9
 
J
a
n
u
a
r
y
 
2
0
1
1



176 V. S. NECHITAILO 

volumef, exceeds some critical value fc, for relaxation time, we have the following, 
from (12): 

T = T~ exp - (f, : f )?  

where 
312 3/2 

V 1 4KBT 1 4KBTO 
f s=  f =  - - 

V, V, ( K,,, ) ’ fc = (r) 
and V, is the real volume of the structural element, To is the temperature being 
below the Tg of a polymer and determined from the condition T + ~0 at T + To. 
Substituting (26) into (25) ,  we finally get 

The change in the relaxation time of structural elements at a temperature range 
of from Tg to T may be described by 

T3/2 - T3/2 
R (28) 

V,l2,3 
3 2  T3/2 - T3/2’ 

T(  T )  
T(Tg) 4KB To 0 

Iga,  = 1s- - (4?mT93J2 - (7) 
which at T - T, << Tg can be presented as 

which is similar to the WLF equation (3). 
Proceeding from (29) with regard to the empirically found values of the “uni- 

versal” constants C,  and C2 (see (4 ) ) ,  we find the values of K,,, and To for segments 
in poly(methy1 methacrylate), which consist of seven monomeric units at V ,  = 
977.5. cm3 and Tg = 383 K. Equating 

we get To = 329.4 K, which is 53.6 K lower than Tg and in good agreement with 
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POLYMER FREE VOLUME THEORY 177 

To = 329.4 K presented in reference 2. With allowance made for the To value 
found from (27) and 

we find K ,  = 86.5 dnlcm and T~ = 3.67.10-12 sec. 
The K ,  and To values found allow us to find the specific free volume in a polymer 

at T g ,  
312 

= 0.124, 1 4KBT 
f('&?) = ( K ,  ') 

which is, as in the literature, determined from the data on compressibility,' and 
the specific available fluctuation volume 

which is determined from the .data on the viscoelastic (relaxation) characteristics 
of a polymer, as shown by the literature. It is easy to obtain d, = 4.86. grad-' 
from (26).  

Given that T(TJ  = 1 sec. with regard to (27), we find that Tl = 410 K, which 
is in good agreement with the value of Tl = 413 K given in reference 2. Determining 
T, from the condition 7(T2) = 0.1 sec, it is easy to show that T2 - TI = 7 K, 
which coincides with the value experimentally measured. 

Thus, this paper develops a new concept in the free volume theory in polymers 
and introduces new parameters for respective conditions, which enable the vis- 
coelastic properties and other properties to be adequately described in liquids and 
polymers. 
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